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Chapter 1

Introduction

In this project I have implemented a range of techniques for producing reflections in

real-time, including the implementation of a new technique for computationally cheap,

accurate reflections. I have integrated these techniques into the Unity game engine. I

have evaluated the relative merits of the techniques based on their performance and by

classifying their limitations and failure cases. One example of the results produced is

given in Figure 1.1.

Figure 1.1: The novel reflection technique which I developed, rendering a polished floor

in the Unity game engine.
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1.1 Motivation

Demand for realistic, real-time 3D graphics is constantly increasing, both in video games

and other interactive applications. Real-time, for the purpose of this project, is considered

to be a system running with a consistent frame-rate of at least 30 frames per-second

(FPS). This is chosen to be sufficiently fast for the human eye to perceive motion, and

is an acceptable baseline for performance in video games [1]. This means that graphics

must be rendered in less than 33.3 ms, in addition to performing the other tasks inherent

in the running of a complex real-time application.

Accurate surface lighting is an important aspect of realistic 3D rendering. Basic approxi-

mations for the diffuse and specular components of a surface’s colour, such as the Phong

reflection model [2], are widely used. However, this model fails to account for the influ-

ence of other objects in the scene on the resulting reflection, which is especially notable

in “mirror-like” specular reflection. This component is of particular importance in ren-

dering glossy or highly reflective surfaces, both planar and otherwise, such as polished

floors, water surfaces or metallic objects. Producing an accurate approximation of this

inter-object reflection within such tight time constraints is a challenging problem.

No optimal solution to this problem has been adopted, but a range of different techniques

have been utilised in applications previously, which vary significantly in performance and

accuracy. More accurate, but more costly, techniques involve re-rendering the scene in

some way. Cheaper techniques make use of pre-computation to reduce the run-time costs.

This may be done by storing a representation of the scene in an image known as an

environment map and using this to render the reflection. The different approaches bring

with them different trade-offs in terms of visual artifacts and failure cases, which make

them more or less suited to different situations. I expand upon the theory behind each of

these techniques in the following chapter.

1.2 Terminology

Below I summarise some domain-specific keywords used in this dissertation, for ease of

reference.

• Texture: A 2D array of pixels, each pixel typically consisting of four floating-point

values (referred to as RGBA). Most commonly used to represent the surface colour

of 3D objects (texture mapping) but can be used to store any arbitrary data.

• Environment map: An omnidirectional image rendered from a point in a scene -

giving a view of the surrounding environment at that location.

• Cubemap: A specific implementation of an environment map, mapping the scene

onto the faces of a cube (see Section 2.1.5).

• Normal map: A texture where each pixel encodes a normal vector.
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• Rendering pipeline: The steps transforming a 3D scene composed of polygons into

a 2D image composed of pixels to display.

• Shader : A program running on a GPU, operating as a part of the graphics pipeline.

The most common shader types are vertex and fragment shaders. A fragment shader

runs once for each pixel or “fragment” of a pixel of a polygon appearing in the output

image, taking many inputs and producing an RGBA colour as its output.

• Draw call : A function call to the GPU in which a model is rendered using given

shaders.

• Depth buffer : A texture generated as part of the rendering pipeline in which pixels

encode the depth of geometry in the scene (see Section 2.1.6.2).

• Depth Texture Parallax Corrected cubemaps (DTPC): The new technique for reflec-

tions I introduce in this dissertation (see Section 3.2.3).

• OpenGL and Direct3D : The most common APIs for 3D graphics rendering. The

Unity game engine is based on Direct3D, with shaders written in the HLSL language,

but can cross-compile to OpenGL platforms.

• World-space: A geometric space used to position 3D objects in a scene, with an

associated Cartesian coordinate system.

• Screen-space: A geometric space in which the camera is at the origin, the xy co-

ordinates map to positions on the screen and the z-axis points down the camera’s

view direction. This coordinate system maps to the view frustum of the camera.

• Unity game engine: A 3D application for developing video games in which the

project was built (see Section 2.2.1). Includes an Editor in which most game devel-

opment occurs.

• Scene View : A 3D view within the Unity Editor, used for viewing and modifying

scenes.

• Inspector : A context-sensitive panel for setting the properties of objects in the Unity

Editor.

1.3 Summary

This project focused on comparing and evaluating techniques for rendering reflective sur-

faces in the context of a real-time 3D application. In the rest of this dissertation, I discuss

the research I performed into existing techniques and other relevant areas, as well as the

software engineering aspects I considered (Chapter 2). I give details of the process of

implementing these techniques in the Unity game engine, along with a novel technique

which I developed (Chapter 3). I then evaluate the merits of each of these techniques,

along with the success of the project as a whole (Chapter 4).



Chapter 2

Preparation

In this chapter, I present an overview of concepts relevant to the project, based on the

research I performed prior to, and during, the implementation stage. I then discuss the

aspects of software engineering which I employed to help the project proceed smoothly,

along with the requirements which I set for the project.

2.1 Theoretical background

In this section, I begin with a brief introduction to the physical basis for reflections,

followed by a range of techniques for rendering reflections. Finally, additional concepts

relevant to the new method I implemented are discussed.

2.1.1 Reflections in nature

In classical electromagnetism, visible light is a wave in the electromagnetic field. The path

that light takes through an environment may be modelled by considering light in terms

of individual rays, which travel in straight lines, a model known as geometrical optics [3,

p. 37].

When a ray passes between two media with different refractive indices, it may be re-

flected. (In general, it may also be refracted or absorbed.) The process follows the laws

of reflection: (i) The angle of the incident ray to the normal is equal to the angle of the

reflected ray to the normal, (ii) the incident ray, reflected ray and normal are coplanar,

and (iii) the reflected and incident rays are on opposite sides of the normal.

Reflection can be classified as diffuse or specular. A reflection is specular, or “mirror-like”,

if it produces an image, and diffuse if it does not. Very smooth surfaces produce primarily

specular reflection, while surfaces with microscopic surface irregularities cause light to be

reflected in all directions, giving diffuse reflection.

9
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The proportion of incident light which is reflected by a surface, its reflectance R, can be

determined by the Fresnel equations. They give the reflectance for light rays based on

their polarisation (s or p), incident angle θi, refracted angle θt, and the refractive indices,

n1, n2, of the media [3, p. 106-108].

Rs =

∣∣∣∣n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

∣∣∣∣2 Rp =

∣∣∣∣n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

∣∣∣∣2
In computer graphics, Schlick’s approximation [4] is a widely used approximation for the

effect of Fresnel reflection.

R = R0 + (1−R0)(1− cos θi)
5 where R0 =

(
n1 − n2

n1 + n2

)2

We can assume that n1 = 1, that is, that one of the media is air. Alternatively, R0 could

be a user-defined constant for a given surface.

Schlick’s approximation reproduces the appearance of stronger specular reflections when

a surface is viewed at grazing angles.

Geometrical optics is a greatly simplified model of the classical behaviour of light, and fur-

thermore ignores effects arising from the wave-particle nature of light described by quan-

tum electrodynamics [5]. However, as physically accurate simulations of the behaviour

of light and matter are far beyond the realm of even the most advanced non-real-time

renderers, such a simple model is sufficient for these purposes. The primary concern for

real-time rendering is whether the effects are visually convincing to a viewer, regardless

of the extent of their physical correctness.

2.1.2 Ray-tracing

Ray-tracing is an approach to rendering based on the ray model of light, which is capable

of producing visually accurate reflections [6]. The optimisation made by ray-tracing is

that rays are traced backwards from the camera into the scene, approximating the path

they would take based on their interactions with scene objects.

For each pixel on screen, a ray is fired into the scene and tested for intersection with each

object. The nearest intersection to the camera is found. At the intersection point, further

rays can be found, including reflected and refracted rays, and rays towards the light source

of the scene. Further ray-traces can be performed recursively using these rays. The colour

of the surface at the intersection point, and hence the colour of the pixel, is affected by

the influence of each of these rays and the surface properties of the object. The recursive

operations allow for physically realistic lighting accounting for other objects in the scene,

including mirror-like reflections.

Unfortunately, this approach is computationally expensive as each ray-trace step must

perform tests for intersection with some or all of the objects in the scene, and evaluate a
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Main camera

Reflected camera

Figure 2.1: A diagram showing the setup for Planar reflections. A secondary camera is

placed in the scene, reflected about the plane. The viewing frustums of both cameras are

shown as dashed lines.

lighting equation. Additionally there may be many recursive ray-tracing steps per-pixel

in order to compute the influence of reflected light. Modern graphics hardware is not

well-suited to this type of algorithm, which contains much complex control flow causing

stalls on parallelised GPU architectures. GPU architectures have been optimised for the

traditional polygon-based graphics pipeline. As a result, the technique is not generally

utilised in real-time applications, and faster approximations are needed.

2.1.3 Planar reflections

Within the traditional pipeline, one of the simplest methods for producing reflections is

simply to re-render the scene [7].

Another camera is placed into the scene based on the position of the main camera and

the reflective surface (Figure 2.1). This camera has a near clipping plane which is aligned

with the reflective surface, such that only objects in front of the surface (from the main

camera’s perspective) are drawn. As a practical example, the technique may be used to

render reflections on a flat water surface. The secondary camera would be placed below

the water’s surface, but the clipping plane means that it would not render any of the

scene geometry below the water.

The camera is then rendered separately and composited onto the surface in the main

camera image. This achieves results equivalent to those obtained through ray-tracing,

but is significantly faster. This is because the secondary camera is rendered in the same

way as the main camera, and hence is able to utilise all of the optimisations of the standard

rendering pipeline. However, as is apparent from the diagram, the technique is suitable for

rendering reflections on planar surfaces only, as for non-planar objects a separate camera

would have to be created for each polygon, quickly becoming prohibitively expensive in
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terms of draw time and memory requirements. This necessitates alternative approaches

for the more general case of curved objects.

Note the distinction between this specific Planar reflections technique, and the rendering

of reflections on planar surfaces in general, which can be done with any technique. In this

dissertation, the capitalised term is used for this technique to avoid ambiguity.

2.1.4 Screen-space reflections (SSR)

As part of the rendering pipeline, depth information about the scene is collected in the

form of a depth buffer. The depth buffer is a texture in which each pixel corresponds to the

distance to geometry at that point in the scene along the camera’s z-axis. Another buffer

can contain the normal vectors of surfaces at each pixel. Using this information, combined

with the rendered image of the scene, an approximation of ray-tracing can be performed in

screen-space (as a post-processing step which occurs at the end of the rendering pipeline).

Such a technique can be optimised to run in approximately 1 millisecond on modern game

consoles [8]. The limitation is that only objects which appear on-screen can appear in

reflections, leaving gaps in the image, or no reflection at all in cases such as a mirrored

surface directly facing the camera. Another technique should be employed as a fallback

in these cases.

This use of the depth buffer and an approximation of ray-tracing are similar to the alter-

native approach using cubemaps investigated later in this dissertation.

2.1.5 Cubemaps

An environment map is an omnidirectional image rendered from a point in a scene - giving

a view of the surrounding environment at that location. This can be rendered in advance

(“offline”) and stored in a texture for use during real-time rendering (“online”). This is in

contrast to the techniques outlined above, in which no pre-computation is possible.

Environment maps can be used in simulating reflections on curved (or planar) surfaces.

Mapping onto a cube is the most widely used technique for storing such an environment

map because it simplifies both the process of capturing the images, and the mathematics

needed to find a particular direction in the map [9]. The cubemap is captured by rendering

the scene six times, once for each face of the cube. Figure 2.2a gives an example of the

cubemap texture produced.

The idea behind using cubemaps for reflections is as follows: consider the scene surround-

ing the reflective surface to be an infinitely distant cube, textured with the cubemap.

Then, use the reflected vector from the surface to sample the texture on the surface of the

cube, and use this as the reflected colour for the surface. This reduces the entire problem

of rendering reflections down to a single texture lookup per pixel.
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(a)

(b)

Figure 2.2: A diagram showing how (a) a scene is represented as six faces in a cubemap

texture, and (b) how the reflected vector is used to sample the texture.
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Figure 2.3: Examples of cubemap-based reflections in the Half-Life 2 engine.

Cubemaps became widely adopted for use in real-time applications following the addition

of hardware support for sampling cube textures starting with Nvidia’s GeForce 256 GPU

[10] in 1999. Both the OpenGL and Direct3D APIs then provided the ability to efficiently

sample a cube environment map using a direction vector. Games such as Half-Life 2

[11] made use of this hardware support to cheaply render reflective surfaces in a realistic

environment (Figure 2.3).

However, the technique suffers from a few limitations. Firstly, if the cubemap is captured

offline and not recalculated, changes in the scene at runtime are not present in the re-

flections. Perhaps more noticeably, a cubemap is captured at a single sample position in

the scene. As the camera moves away from this point, the reflection becomes increasingly

unrepresentative of the scene it is rendered in.

Several techniques can be employed to help alleviate these limitations, whilst maintaining

the advantages of using cubemaps. Investigation of these techniques will be the main

focus of this dissertation.

2.1.6 Related concepts

The following sections discuss concepts that I learnt about to aid in my implementation

of the novel reflection technique.

2.1.6.1 Ray-marching

Ray-marching is an alternative to ray-tracing, which is useful in cases when it is not

possible to analytically find the intersection point of a ray with the scene. Instead, the

algorithm steps along the ray until it reaches a point which is inside the geometry. This



2.1. THEORETICAL BACKGROUND 15

(a) (b)

Figure 2.4: (a) A basic ray-march of a heightmap terrain (red). The march proceeds in

steps until the ray’s current y-position is below the current y-position in the heightmap.

(b) A ray-march of an SDF of the same terrain. At each step, the field is sampled and

the next step distance is equal to the sampled distance (represented by the blue circle),

which is the minimum distance to the surface at the current position.

means that the only required information from the scene is whether a point is inside or

outside of the geometry.

This algorithm is useful in rendering heightmaps [12]. A heightmap is a 2D texture in

which each pixel encodes the height of the scene at that point. The ray has intersected

the scene when the its y-coordinate is less than the height at the current position in the

heightmap, as shown in Figure 2.4a.

The algorithm can be slow as many steps may be needed in order to get a sufficiently

accurate intersection and to avoid stepping through small objects. Several techniques

exist to speed up ray-marching. One such method is signed distance field (SDF) ray-

marching [13]. In a signed distance field, the scene is defined as a function giving the

distance to the surface of the geometry at every point. The ray-marching algorithm can

then be adapted to sample the SDF at each step. The length of the next step taken can

be equal to the sampled distance, because the scene geometry must be at least this far

away along the ray direction. Figure 2.4b gives a representation of this process in two

dimensions, where circles represent the values obtained from the distance field at each

point.

I investigated the use of a ray-marching algorithm in the novel cubemap reflection method,

which I discuss in the Implementation chapter.

2.1.6.2 The depth buffer

In the GPU rendering pipeline, as part of the rendering process a texture called the depth

buffer is filled. Each pixel in the depth buffer contains the distance along the camera’s
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Figure 2.5: A rendered scene and the contents of its depth buffer.

z-axis of the geometry at that point in the scene. It is used when rasterising triangles

to ensure that pixels are only filled when the triangle being rendered is in front of the

geometry already rendered at that pixel. The information stored in the depth buffer can

be extracted by shaders, for use in post-processing effects such as screen-space reflections.

The format in which depth buffer values are stored varies between platforms and is non-

linear. This must be accounted for when writing shaders which use the depth buffer.

Using render-to-texture, the depth information can also be stored to the disk as an image

for future use. As a result, a camera can be rendered and its depth buffer used to

generate a heightmap representation of the scene. Furthermore, it is possible to create

an omnidirectional depth map by extracting the depth buffer in each direction when

capturing cubemaps. I discuss the steps needed to perform this operation and the use of

the generated depth cubemap in the Implementation chapter.

2.2 Software engineering techniques

2.2.1 Choice of tools

I chose to use the Unity game engine1 for my project. The reasons for this decision were

twofold. Firstly, it allowed me to focus my limited time on implementing components

directly related to the aims of my project, as boilerplate components such as cameras,

scene editing and setting up a rendering context are handled by the engine. Secondly,

Unity is an engine widely used in commercial projects and hence the results achieved by

my implementation should be reflective of what is possible in real-world applications of

the techniques.

I used Microsoft Visual Studio as my IDE because of its integration with Unity.

For the purposes of evaluation, I wrote additional Unity scripts and made use of the

engine’s in-built profiler. For analysing GPU performance, I used RenderDoc2, an appli-

1https://unity3d.com/
2https://github.com/baldurk/renderdoc

https://unity3d.com/
https://github.com/baldurk/renderdoc
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cation which can be used to capture frames rendered by Direct3D programs, and replay

them later, allowing me to make repeated timings of individual draw calls.

Finally, I used Git for version control. The project is mirrored on a private GitHub

repository as well as two personal machines. Branches were used to work on experimental

changes while maintaining a functioning build.

2.2.2 Project structure

The project consists of a set of independent components; the different techniques being

investigated. The implementation of these was kept separate, however going into the

coding stage it was important to maintain a consistent structure for each, for ease of use

and to allow them to be easily interchanged during the evaluation stage. This would be

somewhat challenging due to the different combinations of GPU and CPU code needed

for each technique, but was achieved by defining an abstract technique superclass which

encapsulates basic properties. Each implemented technique extends from this, performing

the necessary setup and runtime behaviour for that technique.

Other components included methods for capturing cubemaps and recovering information

from the depth buffer. Each was required to function independently of other parts of

the project and to integrate closely with the Unity Editor. For example, each of the

techniques needed a customised graphical user interface (GUI) within the Editor.

2.2.3 Methodology

Overall, I chose to use an iterative approach to designing the project. In reimplementing

existing techniques, the more complex techniques tended to build upon the approaches

used by the basic ones, so it made sense to schedule work on them sequentially, as the

knowledge gained could be transferred between each step of the process. In implement-

ing the novel techniques, the process was more exploratory, so I would start with the

most näıve implementation and then iterate upon this, introducing optimisations and

improvements.

Finally, when there was a dependence between different parts of the project, such as

cubemap capture and the cubemap reflection techniques, I would use placeholder inputs,

such as example cubemap images sourced online, or manually created depth textures, to

allow implementation to proceed unhindered.

2.3 Requirements analysis

Before starting the implementation, I defined the requirements of my project based upon

the Success Criteria and extensions which outlined in the Project Proposal (Appendix B).
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I then used the MoSCoW prioritisation technique to organise these goals for implemen-

tation. This technique defines four levels of priority, Must have, Should have, Could have

and Won’t have, but would like.

The requirements which I decided on for the project are outlined below.

1. Implementation of the basic cubemap rendering technique, along with at least one

pre-existing method for rendering cubemaps with parallax correction.

This is the most basic goal of the project, to investigate these techniques for the

purposes outlined above. Must have.

2. Implementation of the proposed depth-based parallax correction technique, along

with a method for capturing cubemaps with the required depth information.

This is the main project goal. As it is a new technique there may be more challenges

encountered, but an implementation is a crucial part of the project. Must have.

3. Implementation of each technique with a uniform interface and integration with the

Unity Editor.

This is important for usability and performing the evaluation efficiently. Should

have.

4. Implementation of alternative techniques, including ray-tracing, Planar reflections

and screen-space reflections.

This is important to gain a good understanding of the relative merits of the tech-

niques being investigated. Should have.

5. Each method (excluding ray-tracing) should be optimised to perform sufficiently

well for use in a real-time application, for example, running at 30 FPS or higher on

a typical gaming computer.

This is not a strict performance requirement and any implementation should be able

to reach it. Must have.

6. Completion of an evaluation based on: i) Comparison of the relative performance

of each technique, with and without optimisations applied. ii) Comparison of the

visual results, with one or more alternative techniques for real-time reflections, and

with an accurate reference image. iii) Investigation and classification of the failure

cases for each technique (for example, cases in which the technique incurs a much

greater performance cost, or produces a particular visual artifact when compared

to a reference).

The evaluation is a crucial part of the project. Must have.

7. Extension: Additional reflection features, such as bump mapping, masking and

blending with a surface texture.

An extra feature that should be easy to implement but will produce results more

representative to those used in an actual system. Could have.



2.4. STARTING POINT 19

8. Extension: Cubemap blending - to investigate methods for interpolating smoothly

and efficiently between cubemaps as the camera moves between areas.

An extra feature that could be implemented if extra time is available but is not key

to the goals of the project. Could have.

9. Extension: Dynamically rendered cubemaps and integration of dynamic objects into

static cubemap reflections.

I decided that these tasks would be too time consuming within the project schedule

that was available and so were not prioritised. Won’t have.

This set of requirements allowed me to focus my implementation time on the highest

priority aspects of the project.

2.4 Starting point

I had some pre-existing knowledge writing shaders in HLSL (High Level Shading Lan-

guage) as a result of a summer internship at a video games company, Studio Gobo. The

suggestion for this project originated with a programmer from Studio Gobo, Huw Bowles,

who provided references for my initial research and suggested investigating the depth-

based approach using ray-marching.

The project was built using the Unity game engine. As a result, all of Unity’s features

were available for me to use. Most notably these include a full rendering system, the

GameObject system (in which objects in the scene can be composed from a GameObject

and a list of scripts known as Components), and a graphical interface for scene editing.

No Unity-provided reflection techniques were used by in my project. My starting point

was an empty Unity project.



Chapter 3

Implementation

In this chapter I give details of how I implemented a range of reflection techniques in the

Unity game engine. I give examples of the combination of CPU and GPU code required for

each technique and the challenges they presented. I go on to give a detailed explanation

of the process of implementing the novel reflection technique, and the challenges that were

encountered.

3.1 Project setup

The project takes the form of a Unity engine project directory, in which source files are

divided into subdirectories by type and purpose. For ease of use, I designed the project

to integrate tightly with the Unity Editor. This had the added benefit of making it

easy to write scripts to automate the testing of different reflection techniques during the

Evaluation process.

The main user-facing components of the system are outlined below:

• CubemapCapturePrefab: A prefab is a preconstructed GameObject that can be

placed into any Unity scene. This prefab has a script attached which is responsible

for rendering and storing cubemaps and depth cubemaps for use in the rendering

techniques which I implemented. The script is associated with a custom user in-

terface in the Unity Inspector to allow for easy tweaking of parameters, as seen in

Figure 3.1.

• ReflectionManager : This class can be attached as a Component to any GameObject

in order to render a reflective surface on that object. The ReflectionManager object

contains a list of references to Helper objects for each reflection technique. These

Helper objects perform the setup and runtime behaviour of each technique, including

passing parameters to the GPU. Each Helper is constructed only when its technique

is selected. The script has a custom interface in the Inspector providing a drop-down

menu for switching between techniques and displays controls specific to the currently

20
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Figure 3.1: An example of the custom GUIs and tooltips for CubemapCapture and

ReflectionManager which appear in the Unity Editor. The latter is context-sensitive

depending on the technique being edited (shown lower-left and right).

active technique. It also draws additional information, such as bounding boxes, into

the 3D Scene View of the Editor.

The techniques can all be previewed in the Editor as well as at run-time. They can

also be changed at run-time, either by a method call from another script or using

keyboard controls.

The project takes advantage of inheritance and interfaces for the purposes of polymor-

phism and code reuse. Helper classes extend from a common abstract class allowing them

to be used interchangeably throughout the project, despite their very different implemen-

tations across the GPU and CPU.

3.1.1 Capturing cubemaps

The ability to create new cubemap textures is implemented in the CubemapCapture script.

When attached to a game object (eg. in the CubemapCapturePrefab) placed somewhere

in the Scene, it can capture cubemaps at that point.

The basic procedure for creating a cubemap is as follows. For a given FaceResolution

an output texture of size (4 * FaceResolution) x (3 * FaceResolution) is created.

This will contain the final cube net which is written to disk. A render texture the size of

one face is also created. A render texture is a texture on the GPU which a camera can

render to. A camera with a 90° field-of-view is created at the capture point, and is rotated

to each of the six axis directions. The scene is rendered to the render texture each time,

the resulting image is copied onto the CPU output texture in the correct position in the

net. Finally, the output texture is saved to disk.
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3.1.1.1 Capturing depth

As discussed in Section 2.1.6, a shader can be used to output the depth texture that is

created in rendering a scene. Therefore we can save the depth map of a scene to disk by

rendering the scene, with such a shader applied, to a render texture and then reading and

storing the resulting texture.

A few extra steps are required to obtain usable values from the depth buffer. Firstly,

the hardware depth buffer is stored in a non-linear format. This format varies between

platforms, but Unity provides a cross-platform shader macro to convert from the hardware

value to a normalized floating point value. Then, a means of storing this value in a texture

without loss of precision is needed. In theory, a floating point texture format should make

this trivial, but in practice it was found that Unity’s support for floating point textures

was limited and precision was lost. Instead, I wrote a function to discretise the value

and store it in the RGBA channels of a standard texture, from most significant to least

significant bits.

To decode the texture back into an actual world-space distance in another shader, the

inverse process is needed. In addition, the depth value obtained needs to be denormalized.

This is done by multiplying the value from the texture by the distance of the far clip plane

of the original capture camera. In my implementation, this value can be passed from

the CubemapCapture script, along with other useful information such as the world-space

location of the sample point.

There is one further problem to consider. The depth value contained in the buffer is the

distance to a point along the camera’s z-axis. In the case of heightmap rendering, this is

the correct value that is needed. However, the value that will actually be needed when

rendering the depth cubemap is the straight-line distance from the sample point to the

position, along the direction vector being sampled. See Figure 3.2 for a visual explanation.

I performed this additional correction step when rendering the cubemap face by using the

texture coordinate of the pixel to calculate the straight-line distance.

When the resulting texture file is imported back into Unity, it must be set up to use

pointwise (unfiltered) sampling, and also must be flagged as a “Truecolor” texture to

prevent Unity applying lossy compression and destroying the depth information. The

latter point caused many weeks of difficulty as it was not easy to discover what was

causing the problem.

3.2 Cubemap-based techniques

I will now go on to discuss the implementation of each of the reflection techniques inves-

tigated. I begin with the cubemap-based techniques which were my primary focus.
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Figure 3.2: A diagram showing the capture of one cubemap face. When sampled in a

direction v̂, the resulting distance will be the axis-aligned distance along the z-axis of the

camera that captured the face, pz. What is actually needed is the straight-line distance,

D, to the scene geometry in the direction v̂. Given knowledge of the near-clip distance

and the texture coordinates of the pixel in question, it is trivial to find D using similar

triangles. This correction is performed when the depth buffer is recovered, before saving

into the cubemap texture.

3.2.1 Uncorrected

The most basic method of producing a reflection given a cubemap image is to calculate

the reflection vector from the object’s surface and use this to sample the texture directly.

Only a basic fragment shader1 is needed, which requires access to the surface normal and

the view vector (that is, the direction of the camera from the surface).

The basic fragment shader can be extended to create more visually interesting effects. A

normal map can be used to define the normal vectors used in the reflection calculation,

simulating surface “bumpiness” at the sub-polygon scale. A base texture can be added

to define the surface’s colour, and blended with the reflection colour. The weighting of

reflection colour versus surface colour can be a constant, or dependent upon the reflected

angle, as in Fresnel reflection (see Section 2.1.1). Each of these effects is shown imple-

mented in Figure 3.4 and can be easily used with any of the other cubemap techniques

investigated. Texture and normal mapping are omitted from subsequent screenshots to

make the reflected image itself easier to see.

As mentioned in Section 2.1.5, this technique is subject to parallax error because it makes

the assumption that all geometry appearing in the cubemap image is an infinite distance

away from the sample location. The following techniques aim to reduce the effects of

parallax error in the image produced.

1Typically known as a pixel shader in the context of HLSL.
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f l o a t 3 incidentRay = −input . viewDirection ;

f l o a t 3 n = input . surfaceNormal ;

r e turn texCUBE( CubemapTexture , r e f l e c t ( incidentRay , n ) ) ;

Figure 3.3: Example of the contents of a fragment shader for basic cubemap reflections.

reflect is an intrinsic HLSL function producing a reflection vector given an incident

vector and surface normal. texCUBE samples a cube texture.

Figure 3.4: From left to right: 1) Basic cubemap reflections. 2) Reflections with the

surface’s normal vectors determined by a normal map. 3) Reflections with a normal map

using Schlick’s approximation of Fresnel reflection to determine the influence of surface

colour versus reflected colour.
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3.2.2 Proxy geometry parallax correction

To correct for the parallax error in cubemap reflections, two things are needed; the position

at which the cubemap was captured in the scene (the sample point), and the positions

of geometry in the scene. The first is readily available (simply read the position of the

CubemapCapture object) but the latter is more difficult. It is needed to find the position

at which the reflected ray intersects with the scene, so that the correct location in the

cubemap can be sampled. The brute-force approach is ray-tracing the scene, which is too

costly and defeats the point of using a cubemap.

This technique instead defines a simpler proxy geometry to represent the scene [14]. This

geometry is a 3D primitive chosen such that it is cheap to calculate ray intersections with.

If we can find the position at which a reflected ray hits this approximation of the scene,

and we know the cubemap sample point, we can find the direction of this intersection

point in the cubemap.

The reflection produced is then accurate given the assumption that the actual scene is

close to the proxy geometry.

The per-pixel algorithm is the following:

1. Find the reflected ray from this point on the surface.

2. Find the closest intersection point of the ray with the proxy geometry, in world-

space.

3. Given the location of the intersection, and the sample location of the cubemap, find

the direction of the intersection point from the cubemap.

4. Use the direction vector to sample the cubemap texture.

A diagrammatic form of this algorithm is shown in Figure 3.5.

I chose to first implement this technique using an axis-aligned bounding box (AABB) as

the proxy geometry. An AABB can be entirely defined by its maximum and minimum

coordinates.

There are six axis-aligned planes with which to test for intersection, giving six equa-

tions:

ux + tv̂x = mx

uy + tv̂y = my

uz + tv̂z = mz

ux + tv̂x = nx

uy + tv̂y = ny

uz + tv̂z = nz

where u is the world-space position of reflection, v̂ is the reflected vector, and m and n are

the minimum and maximum bounding box coordinates. The smallest positive value for t

is the intersection distance with the AABB. We can treat these as two vector equations

in order to take advantage of GPU vector operations and rearrange to find two vectors of

t, from which we take the smallest positive value.
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Figure 3.5: A diagram showing how the intersection point of the reflected ray with a

proxy geometry (red) can be used to get a corrected direction vector (blue) to sample the

cubemap texture.

This algorithm is performed within the fragment shader, and as a result there is no run-

time CPU overhead. The CPU simply sets up the shader and passes in the min. and max.

bounding box coordinates given a user-defined position and scale. The bounding box itself

rendered within the Editor Scene View to help the user define a bounding box close to

the actual scene geometry. An example of the reflections produced using an AABB proxy

geometry are shown in Figure 3.6.

I was able to remove the restriction of axis-alignment without increasing the complexity of

finding the intersection point. To do this, I defined a rotation matrix on the CPU based

on a user-specified rotation, which was passed into the shader. This transformation is

then applied to u and v̂ before finding the intersection. The intersection distance is then

used to find the intersection point in “un-rotated” world-space coordinates. Therefore,

the additional cost of using an oriented bounding box (OBB) is two matrix-vector multi-

plications per pixel. An OBB will be preferable to an AABB in cases where the scene is

close to a box in shape but not aligned with the coordinate axes, for example a sloping

corridor.

Other types of proxy geometry are possible, as long as their intersection with a ray can

be cheaply computed in a shader.

I also implemented sphere proxy geometry. Taking the vector equation for a sphere,

|x− c|2 = r2,
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Figure 3.6: Cubemap reflections on a spherical surface. The cubemap was captured at the

centre of the room and the surface placed in one corner. Left is the uncorrected reflection.

Right is the reflection with AABB parallax correction applied.

and substituting in the equation for a ray,

x = u + tv̂,

produces a quadratic equation in t. In the spherical proxy parallax correction shader, this

quadratic is solved and max (t1, t2) is taken as the intersection distance.

3.2.3 Depth texture parallax correction (DTPC)

The catalyst for investigating this technique was the idea that, instead of using an ap-

proximate, and user-defined, proxy geometry for the parallax correction algorithm, infor-

mation about the actual scene’s geometry could be used instead. This information could

be obtained from a depth map captured at the cubemap sample point, and stored in

another cubemap texture (the implementation of which was explained in Section 3.1.1).

This “depth cubemap” effectively defines the surface of the scene surrounding the cube-

map.

It is not possible to find analytically the intersection point of a ray with this surface. In-

stead, a ray-marching-based approach must be used to iterate towards intersection.

Due to the unfamiliar nature of this technique, and the difficulties inherent in debugging

shader code, in implementing this technique I worked towards the final goal in stages.

3.2.3.1 Heightmap rendering

I began by implementing a method of heightmap rendering using ray-marching. A

heightmap of an existing Unity scene could be captured using the process in Section

3.1.1, allowing for easy comparison of the scene rendered using the traditional pipeline
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Figure 3.7: A simple scene in Unity. Left: rendered tradtionally. Right: rendered by

ray-marching a 512 × 512 pixel heightmap. Note how parts of the scene which are not

visible from above cannot be rendered accurately.

and the ray-marching method. The algorithm within the heightmap rendering shader

proceeds as follows:

1. Fire a ray from the camera position into the scene.

2. Step along the ray in steps of a fixed size.

3. At each step, convert from world-space coordinates to texture coordinates to sample

the heightmap.

4. If the sampled height value is greater than the current height of the ray, stop and

return the colour of the image texture at the current texture coordinates.

An example of the results of this algorithm can be seen in Figure 3.7. The performance

of the algorithm and the quality of the results are directly dependent on the maximum

number of steps, and step size, used in the shader.

3.2.3.2 Depth cubemap rendering

The main change from rendering a heightmap, is from sampling distance from a 2D texture

using texture coordinates, to sampling distance from a 3D surface using a direction vector.

The new algorithm then becomes the following:

1. Fire a ray from the position of reflection along the reflected direction v̂.

2. Step along the ray in steps of a fixed size.

3. At each step, find the direction of the current position from the cubemap sample

point and sample that direction in the cubemap texture.

4. Find the difference, ε, between the distance sampled from the texture, with the

actual distance between the sample point and the current position. If |ε| is less
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Figure 3.8: A diagram giving a simplified representation of the DTPC algorithm. Red

dashes represent the depth information stored in the captured cubemap. The ray-march

proceeds in steps in the direction of the reflected ray v̂. At each step a depth sample is

taken (blue) and the distance, ε, from the current ray position to the sampled position is

found. The ray-march terminates when either the maximum number of steps is reached

or ε meets the stopping criteria.

than a given threshold τ , stop the ray-march and sample the image cubemap in the

current sample direction.

A diagrammatic form of the algorithm is given in Figure 3.8. An example of the results

of the basic algorithm is shown in Figure 3.9.

The algorithm above makes the assumption that the distance of the ray from the surface

in the direction from the cubemap (ε) is similar to the distance of the ray from the surface

along the direction of the ray. There are some obvious cases when this would not be

a correct assumption, for example the ray approaching a surface close to the normal,

when the sample point is close to perpendicular to the ray direction. However the error

introduced in such cases is not significant when the step size is relatively small, and should

be corrected in the next step if an overstepping is caused.

It may be preferable to change the stopping criteria, from |ε| < τ , to −τ < ε < 0. This

way reflected objects will not appear to protrude further forward than the original object,

and increasing the threshold makes the reflected objects appear thicker in the occluded

direction.

Because of the fixed step size, a quantisation error is visible on large surfaces as the

intersection distance changes in number of steps. I used a simple technique to reduce the
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Figure 3.9: Reflections rendered on spherical surfaces in different areas of a scene, using

the DTPC technique. The same source cubemap is used, but the result has been parallax

corrected so that the correct reflected image appears despite displacement from the sample

point. The right hand image shows some evidence of artifacts due to the occlusion failure

case.

visibility of this effect. When the distance is detected to be within the threshold, the most

recent value of ε is added to the ray distance before sampling the image. This reduces the

visibility of quantisation in many cases, again assuming a relatively small step size.

3.2.3.3 Optimisations

I was able to implement the technique as outlined above to be fast enough to run in

real-time. However, I wished to find further optimisations to make it more competitive

with other techniques and give a more fair performance comparison.

The goal in any optimisation would be to reduce the number of ray-march steps that are

required, as each step requires an additional texture sample. Simply increasing the step

distance and reducing the maximum number of steps will improve performance but will

lead to objects in the scene being stepped over, and more visually obvious quantisation

effects. The extent to which each of these effects is visible will depend on the scene, and

also on the reflective surface, as curved or bumpy surfaces will hide some imperfections.

These issues are discussed further in the Evaluation.

Another approach is needed to further improve performance without compromising the

visual results. The first attempt I took was to investigate an approach similar to distance

field ray-marching. Instead of having a distance field sample to determine the distance to

the surface, I decided to approximate it by kε, for some k ∈ (0, 1]. This should allow much

larger steps to be taken towards intersection. However, I found that in implementing this

method the algorithm would converge to the incorrect distance, or fail to converge at all,

in many cases. The results obtained also depended greatly on the size of the initial step

that was taken. While good-looking and fast results were achievable in some restricted

cases, I concluded that this approximation was not valid in general.
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Given that the reason for failure in this algorithm is due to skipping over objects, it would

be useful to have more information available at each step about potential intersections.

One way to do this is to introduce a data structure known as mipmaps. Mipmaps are

a chain of successively lower resolution versions of a texture. Typically, the lower level

versions are calculated by a process such as bilinear interpolation. Instead, I could change

the sampling method to take the minimum value from the local pixels at the higher

mipmap level. This gives a data structure in which sampling the lower levels provides

successively more conservative estimates of the distance to the surface. The algorithm

can then be altered as such: starting at the lowest mipmap level, take large step sizes

until intersection is found (|ε| is less than the threshold), then increase the mipmap level

until the current position is no longer an intersection. Then continue the march at the

higher level, and with a corresponding smaller step size. The ray-march terminates when

an intersection is found at the highest mipmap level.

It transpires that this approach has been used previously in the context of rendering

heightmaps [15]. I believe it has the potential to give a significant speed-up to the algo-

rithm that could make it more suitable for use in the industry. However, given the time

limitations of my project schedule, I have not completed implementation of the approach

and have left it as an area for future work.

3.2.3.4 Failure cases

The primary failure case for this technique, and for any technique using parallax corrected

cubemaps, is the case in which objects should appear in the reflection which are occluded

from the perspective of the sample point. This means there is no information in the

cubemap about what should appear in these parts of the reflected scene.

I considered three possible approaches to handle the occlusion case.

• Stop the ray-march as soon as the ray enters an occluded part of the

scene. This corresponds to setting the stopping criteria as simply ε < 0. It is faster

as it stops the march early but results in objects having unnatural-looking “tails”

which obscure the occluded areas.

• Continue the march. Either the ray re-enters a non-occluded part of the scene

or continues to infinity. In the second case this can optionally be detected (because

the number of steps is equal to the maximum) and an alternative Fallback cubemap

image can be used.

• Start a second ray-march. A second set of cubemaps can be captured to contain

occluded parts of the scene, for example by culling foreground objects from the scene

or setting a larger near clip distance when capturing. Then, when a ray is found to

go to infinity, another ray-march using the “distant” cubemaps can be started to

render this pixel.

An implementation of the third approach was quite straightforward but given the cost of

doing an entire second ray-march added to the overhead of additional branching in the
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shader, I decided this was not a worthwhile extension. Instead, the choice can be made

from the first two approaches and may be dependent on the appearance of the scene

itself.

3.3 Other reflection techniques

I now go on to discuss my implementation of other techniques for real-time reflections,

which will form the basis of my comparisons with the cubemap techniques in the Evalu-

ation.

3.3.1 Planar reflections

Accurate reflections on planar surfaces are achieved by re-rendering the scene from another

viewpoint. In my implementation, the PlanarHelper obtains a reference to the currently

active camera, along with the position and normal of the plane. This is used to create

a second camera, the transformation matrix of which is modified by reflection about the

reflective plane.

An oblique projection matrix is calculated [16] for the secondary camera, such that the

near clip plane of the viewing frustum is modified to match the reflective plane (meaning

that the near clip plane is no longer perpendicular to the camera’s z-axis) [17]. This is

a cheap way to clip all objects which are below the reflected plane in the scene. Not

doing so would cause artifacts, as objects that are behind the surface could appear in the

reflection.

The secondary camera renders to a texture, which is passed into a shader applied to the

plane itself, so that the reflection image appears on the plane in the main camera’s image.

An example of the results is shown in Figure 3.10.

One advantage of this technique is that recursive reflections are possible. As the secondary

camera re-renders the scene, it can also render other planar reflective surfaces that would

be visible in the reflection. To prevent an infinite recursion depth, a global counter of

the current depth of rendering is maintained so that rendering stops at a user-defined

depth.

3.3.1.1 Optimisation

Because the technique renders to a texture, the resolution of the reflected image can be

scaled independently of the screen resolution. Additionally, harsher criteria can be applied

to what can be rendered in the reflected scene. A nearer far clipping distance can be

defined. A culling mask can define objects from the scene not to appear in the reflection,

for example to prevent small but high-polygon objects being re-rendered. Each of these

optimisations can be applied using the custom Inspector controls I implemented.
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Figure 3.10: A reflective plane rendered with Planar reflections. Unlike in cubemap-based

techniques, moving objects can appear in the reflection. The reflected scene is rendered

at half the screen resolution.

3.3.2 Ray-tracing

I chose to implement ray-tracing as a means to obtain an “accurate” reflection image, as

a point of comparison with the other techniques, rather than as something appropriate

for a real-time system. The ray-tracing algorithm can be implemented on either the CPU

or the GPU. A GPU ray-tracer would give significantly better performance because of

the parallelism available. However, for the purposes of this project I chose to implement

the technique on the CPU. I did this because the algorithm must integrate with Unity, to

be able to calculate ray intersections with arbitrary objects in the Unity scene and access

their properties such as colour, texture and reflectance. Doing this on the GPU presents

many challenges and was a task far beyond the scope of this project.

The CPU algorithm I implemented was able to make use of Unity’s ray-casting system

which is designed for uses such as physics collisions. It allowed me to obtain the intersec-

tion point of any ray and a reference to the object it intersected. This could then be used

to obtain the surface properties of that object.

In my implementation of each of the other techniques in this project, the reflected scenes

are rendered using Unity’s own lighting system to produce their final appearance. In

my custom ray-tracing technique, access to lighting information was not available, so I

implemented a Phong reflection model which approximated the appearance of the Unity

system. The model can use the colour, texture and roughness of Unity objects as pa-

rameters. More complex lighting features could be added to the system in future, such

as shadows, normal mapping, and alpha-blending, but these were not necessary for the

technique to fulfil its purpose within this project. An example output from this technique

is shown in Figure 3.11.

As the performance of this algorithm was too poor to be feasibly used interactively, I
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Figure 3.11: Accurately reflected geometry on a spherical surface, rendered using a CPU

ray-tracing algorithm.

chose instead to allow ray-traced images to be directly written to a file using a control in

the Inspector.

3.4 Summary

In this chapter I detailed the implementation process for this project. I implemented

a technique for capturing cubemaps which I extended to capture depth cubemaps. I

implemented a framework for managing different implementations of real-time reflections

integrated with the Unity Editor and its user interface. I implemented the basic rendering

technique for reflections using cubemaps, and extended this to several methods for parallax

correction. I also implemented Planar reflections and a CPU ray-tracer to serve as a

comparison to these techniques. Finally, I implemented the new reflection technique,

involving ray-marching a depth cubemap. I discussed the challenges involved in optimising

this technique and the possibility for future extensions.
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Evaluation

Following the implementation of the range of different reflection techniques, in this chapter

I analyse how each performs in a range of constructed and “real-world” scenes. There are

a range of different factors having effects on the performance of each technique, which are

taken into account. In addition, each technique produces different types of visual artifacts

or inaccuracies, which I classify and compare. I then go on to evaluate the success of the

project itself, based on the Success Criteria in the Project Proposal.

4.1 Evaluation methods

4.1.1 Performance profiling

Frame-rate is commonly used as an indicator of the overall performance of a real-time

system. However, in this instance this is too coarse-grained a metric, as many of the

techniques are fast enough to have a minimal effect on frame-rate relative to other variables

present in the runtime behaviour of a complex application such as Unity.

Instead, I measured the render time in milliseconds for each technique. For techniques

running entirely on the GPU, this corresponds to the time for the draw call in which the

reflective polygon/polygons are rendered. For algorithms also having a CPU component,

in this case the Planar camera technique, I also took this into account, using Unity’s

built-in profiling tools. The CPU ray-tracing technique which I used to produce accurate

reference images was also tested with these tools, however, as discussed in Section 3.3.2,

this technique is not intended to be competitive in performance terms for the purpose of

this project.

GPU profiling was performed using RenderDoc, as mentioned in Section 2.2.1, to make

repeated timings of the relevant draw calls. All performance profiling was performed on

a stand-alone build of the project, to avoid the overhead of the Unity Editor influenc-

ing performance. The mean of 5 measurements was taken for each result, and a 95%

confidence interval was computed.
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The evaluation was performed on a PC with an Nvidia GTX 970 GPU, with the applica-

tion running at a resolution of 1920× 1080, on Windows 10.

4.1.2 Choice of scenes

The choice of 3D scenes on which the techniques are tested is crucial to a fair evalu-

ation. Some techniques have a near fixed cost regardless of the scene. This includes

the Uncorrected cubemap technique, and any method using proxy geometry for parallax

correction.

For the Planar technique, as the scene is being re-rendered, its performance is directly

correlated with scene complexity in terms of number of triangles (and the complexity of

shaders present in the scene itself).

In techniques employing ray-marching, the novel DTPC technique and Screen Space Re-

flections, the relationship between scene complexity and performance is more subtle. The

worst case in performance occurs when a ray takes the maximum number of steps before

stopping. This occurs when the ray goes to infinity meaning that, somewhat counterin-

tuitively, one worst case is when only the sky appears in the reflection.

The visual artifacts which occur with different techniques are also more or less visible

depending on the specific layout of the environment, as is discussed later.

I chose a range of different scenes, including both freely available game environments and

test scenes I generated myself, which aim to cover this range of factors. The pre-existing

scenes chosen include the Sponza and Rungholt scenes [18], and a scene chosen from the

Unity asset store1. More details of the scenes used can be found in Appendix A.

4.2 Performance evaluation

In this section I perform a quantitative evaluation based on the performance of each of

the techniques investigated. I begin with some tests relevant specifically to the DTPC

technique.

4.2.1 Ray-march steps

This test aimed to evaluate the effect of the number of ray-march steps on performance

of the DTPC technique. The Sponza scene was used, and step length scaled inversely to

number of steps to give the same maximum length for each ray. Figure 4.1 summarises

the results, which confirmed the expected relationship between number of steps and draw

time.

1https://www.assetstore.unity3d.com/en/#!/content/52251

https://www.assetstore.unity3d.com/en/#!/content/52251
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Figure 4.1: A graph showing the relationship between number of ray-march steps and

performance.

4.2.2 Surface size

This test examined the relationship between number of reflective pixels and performance

for the DTPC technique. As the algorithm runs per fragment a linear relationship was

expected. Figure 4.2 shows that an approximately linear relationship was found. I would

hypothesise that the deviation from this relationship is a result of different levels of cache

coherence causing the cost of adding additional pixels to vary. This is in addition to the

inherent errors in the GPU profiling method.

4.2.3 CPU overhead

The Planar technique has a performance overhead for setting up the reflection camera and

associated render texture. This cost was found to be 0.34 ms on average. In comparison,

for the cubemap-based techniques there is only a CPU performance penalty when the

parameters of the technique are changed.

4.2.4 Scene comparison

This test aimed to give a general comparison of the performance of each technique across

the range of scenes outlined in Section 4.1.2. An identical quad geometry was used as the

reflective surface in each scene. For the DTPC technique, the number of step size used
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Figure 4.2: A graph showing the relationship between number of reflective pixels and

performance. Number of pixels is given as a proportion of the pixels in a 934× 934 pixels

quad.

was chosen for each scene, aiming for the minimum number of steps that would give an

acceptable result.

The performance of each method in each scene is summarised in Figure 4.3. The results

confirm that in the proxy geometry case the cost is near constant, with different sizes

and positions of the proxy geometry having little effect on performance. The performance

of the Planar reflections are dependent on the number of triangles in the scene being

reflected. This can be seen in the very high draw time for the Rungholt scene, which

consists of a large and highly tesselated mesh. The performance of the DTPC technique

is dependent on the number of ray-march steps performed for each pixel. This means that

scenes in which the maximum number of steps is lower perform better, and also scenes

for which much geometry is nearby allowing more ray-marches to terminate early.

The results show that as scenes become more complex and thus more expensive to re-

render, the DTPC technique becomes more competitive in its performance. The exception

to this was the Stanford bunny scene, in which the detailed geometry at a range of

distances meant that a very large number of ray-march steps was required to obtain an

acceptable result.

It is also worth considering that the DTPC technique is more widely applicable because

it does not require the surface to be planar.
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Figure 4.3: A chart comparing draw times for each reflection technique on each scene

(lower is better).

4.3 Visual artifacts

Each technique implemented makes different assumptions about the scene, which intro-

duce visual artifacts in the image produced. The techniques also have different limitations

which may reduce their usefulness. In this section I categorise each of these and give ex-

amples. A summary of these artifacts and limitations is given in Figure 4.4.

• Reflection unaffected by camera position (parallax error)

This is the error caused by the assumptions in the basic cubemap reflection tech-

nique, which is the motivation for the parallax correction techniques being investi-

gated for this project. See Figure 3.6 for an example of parallax error.

• Missing geometry occluded from sample point

In the case of cubemap-based techniques, the only information available about the

scene is that which was captured in the cubemaps. Any parts of the scene which

were occluded from this position therefore cannot appear in the reflected image.

When using a proxy geometry, the approximation of the scene produced simply

doesn’t contain these areas. When using DTPC, holes are produced which can be

filled using either information from the occluding pixels, or from a fallback cubemap

texture, as in Figure 4.5.

• Missing geometry occluded from camera

This is the major limitation of Screen Space Reflections, an alternative technique

(see Section 2.1.4) which was not a part of this project.
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Reflection unaffected by camera position (parallax error) •
Missing geometry occluded from sample point • • •

Missing geometry occluded from camera •
Stepping artifacts • •

Objects distorted onto proxy geometry • •
Reflected scene is static • • •
Surface must be planar •

Figure 4.4: A table which summarises the limitations and visual artifacts in each of the

reflection techniques implemented. • = the artifact or limitation is present.

Figure 4.5: The dragon model placed close to the sample point causes a portion of the

back wall to be occluded in the cubemap image. (When using the technique, objects close

to the centre of the scene can be culled when capturing cubemaps such that a case like

this would not usually occur.)
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Figure 4.6: A reflection on a planar surface showing jagged edges due to the size of

ray-march steps being used.

Figure 4.7: A planar reflective surface rendered with bounding box parallax correction.

Parts of the scene which are not close to the proxy geometry, such as the slanted wall and

teapot model, appear distorted in the reflection.

• Stepping artifacts

This is a quantisation effect caused by the fixed steps taken in the ray-marching

algorithm. It is most noticeable at the edges of flat surfaces, where a straight edge

becomes jagged as a result, as shown in Figure 4.6. The significance of the effect

is reduced by the introduction of an interpolation step, but cannot be removed

entirely. In real-world scenes it is less visible as it is masked by the complexity

of the geometry and textures in the scene, and by the properties of the reflective

surface itself.

• Objects distorted onto proxy geometry

Because the proxy geometry onto which the cubemap is being projected (such as

AABB or sphere) does not exactly match the geometry in the cubemap image, there

will always be some amount of distortion in the result produced by these techniques.

Clearly this depends on how closely the proxy geometry and the scene match. See

Figure 4.7.

• Reflected scene is static

This is a limitation for any technique using a pre-computed environment map.

Changes in the scene at runtime are not visible in the reflected scene. In con-
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trast, techniques that use information about the current scene, including Planar

and ray-tracing allow for dynamically changing scenes to be reflected correctly.

• Surface must be planar

This restriction only applies to the Planar method because the camera setup only

works given the assumption that the reflected image will be rendered onto a plane.

This restriction is a significant reason for choosing other reflection techniques.

Each of these limitations is a trade-off in terms of increasing performance. As can be

seen from Figure 4.4, the techniques that are most limited or inaccurate are those that

generally give the best performance.

4.4 Summary

The results of both the quantitative and qualitative evaluations make it clear that there is

no overall optimal technique for real-time reflection rendering. The most applicable tech-

nique depends on three factors: 1) the characteristics of the scene, 2) the characteristics

of the reflective surface, and 3) the performance requirements of the application.

For the first point, the higher the complexity of the scene, the poorer the performance of

the Planar technique, so the more appropriate a cubemap-based technique becomes. The

DTPC technique can produce similar-looking results to the Planar technique which are

competitive in performance for scenes with very large numbers of triangles. The layout

of the scene also affects the usability of this technique, as scenes with detailed geometry

across a wide range of distances will require a much larger number of ray-march steps to

be rendered accurately.

For the second point, the accuracy of the reflection that need be produced depends greatly

on the surface itself. It is easy to spot visual artifacts in a reflection rendered on a smooth

or planar surface. Such errors are obscured on bumpy or curved surfaces. In these cases,

only the general contents of the reflection (such as brightness and colour) need be accurate,

and stepping and occlusion artifacts are less noticeable. This allows for techniques such

as Proxy geometry parallax correction, or DTPC, to be used, and for fewer steps to be

used in the latter. An example of this is shown in Figure 4.8.

Finally, developers may choose to sacrifice accuracy for greater performance on less

powerful hardware, where even the Uncorrected cubemap approach may be the best

choice.

In conclusion, every technique I implemented provides a useful solution to the problem for

a particular context. An area for future work may be to investigate a means of classifying

scenes to create a system which can select an optimal technique automatically given a

scene and a set of requirements.
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Figure 4.8: Visual artifacts due to too few ray-march steps (left) become more acceptable

when the surface normals are less uniform (right).

4.5 Project evaluation

I now evaluate the success of the project itself, based on the fulfilment of the requirements

specified in Section 2.3.

Requirements 1 and 22 were met in the successful implementation of all the cubemap-

based techniques. These, and the other techniques implemented were designed to work

within Unity and to be interchangeable by implementing a common interface, meeting

Requirement 3. I was also able to successfully implement each of the alternative techniques

I specified, meeting Requirement 4.

Following the evaluation which fulfilled Requirement 6, it is clear that every technique

performs well enough to meet Requirement 5.

Of the extensions I gave, I achieved Requirement 7. The remaining two optional require-

ments were not met due to time constraints.

In addition to these specific goals, I feel that I achieved the overall goal of the project. I

implemented a range of different techniques for rendering reflections in real-time, with a

focus on investigating the potential of using parallax corrected cubemaps for this purpose.

My evaluation has shown the merits of each of these techniques.

4.5.1 Challenges encountered

This project has given me an even greater awareness of the challenges inherent in pro-

gramming for the GPU. Compared to CPU programming, the tools for debugging and

profiling GPU code are far more limited. Finding the cause of bugs can be very challeng-

ing in a lot of cases, especially when working on an unknown algorithm when it is hard

to know whether a bad result is a bug or just the output of an unsuccessful algorithm.

This forced me to adapt to implementing algorithms in very small iterative steps, often

outputting intermediate results as pixel values for analysis.

2In the electronic version of this document, the Requirement references are clickable.
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In addition, in several instances a problem I encountered turned out not to be due to

my code or the algorithm being implemented but due to some aspect of the Unity engine

which I was unaware of. Documentation for most of the engine is good but some graphics-

related topics were not well documented - and it is hard to find help when it is unclear what

feature is causing a problem. Unfortunately the core of the Unity engine is closed-source so

I was reliant on documentation and experimentation to understand its behaviour. These

problems caused a few weeks of delays at more than one point in the project. Overall, I

think that using Unity was the right choice for this project because it was quick to get

started working on the core of my project, and the Editor tools available proved to be

very useful in the Evaluation stage, however in future I would consider writing my own

OpenGL application for graphics projects.
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Conclusion

In this project I set out to investigate approaches to generating efficient, accurate re-

flections in real-time rendering, with a focus on investigating the potential of cubemap

techniques for this purpose.

I have implemented a range of techniques. These included uncorrected cubemaps, three

variations of proxy geometry parallax corrected cubemaps, Planar reflections and a CPU

ray-tracing implementation. In addition, I investigated and implemented a new technique

using a cubemap depth texture to perform parallax correction using ray-marching, which

produced competitive results.

I have shown that there is no overall optimal approach to solving the problem. The deci-

sion of which technique to use is a tradeoff based on a range of factors which I categorised

in the Evaluation chapter. My implementations achieved acceptable performance for each

technique, and I compared their visual results with that produced using the ray-tracing

method.

In doing so, I completed all of the core requirements for the project, and one of the

extensions, which I discussed further in Section 4.5.

5.1 Future work

The depth texture parallax correction technique which I implemented was capable of

running in real-time and performed better than Planar reflections for some scene types.

However, I believe that significant performance gains could be achieved using a data

structure such as the minimum mipmaps proposed in Section 3.2.3.3. Implementation of

an extended ray-marching shader operating on such a data structure is an interesting area

for future work.

45
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5.2 Final remarks

I believe the project was a success in introducing me to a wide range of topics in the field

of real-time computer graphics, which built upon those covered in Part II of the Tripos.

In re-implementing existing techniques I learnt a great deal about the challenges involved

in programming for the GPU, in managing a reasonably large amount of source code, and

in working with a complex existing system.

In investigating a novel reflection method, I believe I have implemented a technique worthy

of further investigation that could prove to be useful in industry applications.
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Appendix A

Test scenes

Empty Simple close Simple far

Stanford bunny Sponza Mountain

Rungholt

The images above show the scenes selected for the comparison in Section 4.2.4. The first

four scenes were generated using the Unity Editor. The remaining three are based on

existing 3D models. Details of the scenes, and ray-march parameters used, are given

below.

• Empty: A skybox only. (Steps: 10)

• Simple close: Walls and pillars close to the camera. (Steps: 70)

• Simple far: Walls and pillars further from the camera, to give an idea of how the

scale of the scene affects the techniques. (Steps: 100)

• Stanford bunny: 64 copies of the Stanford bunny model positioned randomly using

a custom script, to give an idea of how techniques cope with complex and small
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geometry. (Steps: 130)

• Sponza: A widely used and moderately complex scene representative of enclosed

environments. (Steps: 45)

• Mountain: A simple but very large scene. (Steps: 40)

• Rungholt: A large outdoor environment which has a very large polygon count be-

cause of its voxel style. (Steps: 100)


